COACHING CLASS ON

Management Accounting

\& Financial Management

Khaled Mahmud Raihan FCCA Senior Vice President
Managing Director's Secretariat Islami Bank Bangladesh Ltd.

Meet the Coach:

2012-Till to Date
 Managing Director's Secretariat
 Corporate Investment Division

Financial Administration Division as Divisional Head

2012
Head of Audit and Risk Rating Risk Management Division

2006-2012

Setting ghaldi standand at nationat tored
Chief Rating Officer (CRO)
2005-2006
Assistant Professor
School of Business
2003-2005
Lecturer
School of Business

Meet the Keynote Coach:

BBA, MBA (Major in Banking)
Department of Finance \& Banking,
University of Dhaka

Fellow Member
Association of Chartered Certified Accountant

Fellow Member

Certified General Accountants of Bangladesh

Diplomat Associate
The Institute of Bankers, Bangladesh

Discussion Summary

- Summary of Course Contents
- Exam Pattern
- Examiner's Review/Report
- Exchange of Views
- Understanding the Basics
- Problems and Solutions

Statistics 1: Success Rate of Part-II Exams (November 2022)

Course	Subject	Candidates	Pass Rate
201	Investment Mgt.	541	56%
202	International Trade	664	49%
203	Ethics in Banking	500	58%
204	MA \& FM	663	34%
205	E-Banking	451	66%
206	MF and Rural Banking	430	74%

Statistics 1: Success Rate of Part-II Exams (May 2023)

Course	Subject	Candidates	Pass Rate
201	Investment Mgt.	393	53%
202	International Trade	510	42%
203	Ethics in Banking	389	41%
204	MA \& FM	473	37%
205	E-Banking	347	49%
206	MF and Rural Banking	314	71%

Statistics 2: Historical Pass Rate of MA \& FM Exam

Examination	No. of Candidates	Pass Rate $(\%)$
May, 2023	473	37%
November, 2022	663	34%
May, 2022	683	45%
October, 2021	986	48%
April, 2020	655	22%
October, 2019	879	31%
April, 2019	517	33%
October, 2018	626	28%

Iceberg that was visible from the
Titanic

Unseen Story of the Iceberg

Summary of Course Contents

Management Accounting:

1. Introduction:

Management Accounting, Financial Accounting, Cost Accounting: Their Relationship and Implications
2. Cost-Volume- Profit Analysis:

Break even Point (BEP): Units and Amount, Margin of Safety, Implications of Increase/decrease of Variable/Fixed costs on BEP
3. Financial Analysis and Planning:

Sources of Financial Information- Income Statement and Balance Sheet, Statement of Changes in Financial Position- Fund Flow and Cash Flow Statement - Ratio Analysis, Financial Spread Sheet
4. Absorption and Variable Costing:

Absorption Costing Vs. Variable Costing: Calculations, Implications, Advantages and Disadvantages and Reconciliations
5. Budgeting For Planning and Control:

Basic Framework of Budgeting: Master Budget \& Cash Budget, Preparation of Cash and Flexible Budget

Summary of Course Contents

Financial Management:

1. Time Value of Money:

Concept of Present Value, Future Value, Annuity, Perpetuity, Islamic Concept of Time Value of Money
2. Capital Budgeting:

Non Discounted Cash flow Techniques: Accounting Rate of Return (ARR), Pay Back Period (PPB) Discounted Cash flow Techniques: NPV, IRR, PI, Capital Rationing and their Applications on Business
3. Working Capital Management, Short, Medium and Long Term Finance:

Different Financing Mix: Short Term Financing Vs. Long Term Financing
4. Lease Financing:

Types of Lease Financing: Operating Lease Vs. Financial Lease, HPSM and their Implications
5. Cost of Capital and Dividend Policy:

Components of Cost of Capital: Cost of Common Stock, Cost of Preferred Stock and Cost of Debt Weighted Average Cost of Capital, Marginal Cost of Capital, Cost of Capital in Islam
Types of Dividend Policy, Factors influencing Dividend Policy, Rationale of High and Low Pay-Out Ratio

Exam Pattern

- There are 8 (eight) questions having 4 (four) questions each from Management Accounting Section and Financial Management Section.
- Each Question carry 20 (twenty) marks.

- Generally, there is a full theory type question in Management Accounting Section which usually contains financial accounting, management accounting and cost accounting issues with implications in banking business
- There is a short note type question in Management Accounting Section where you have to answer 5 (five) short notes out of 8 (eight) short notes.
- Other 6(six) questions carry math/calculations with very low weighateg of theory

Examiner's Review \& Tips

To Do:

- Plan for the exam. Make proper time management
- Give sufficient reading and planning time for the questions and take note of key points
- Start answering the questions which you are most confident
- Be very precise and specific in answering question. The examiner always wants to see the key words in your answer
- Follow all the procedures in solving problems. Give your examiner the impression that you know the solution
- Show your calculations and workings wherever required

Examiner's Review \& Tips

Not to Do:

- Do not enter exam hall without preparation. You can not try your luck!!
- Do not start your answer with theory which might create negative impression on the examiner
- Do not write unnecessary and irrelevant remarks in your answer script. You should not consider your examiner a stupid !!
- Do not break the sequence in answering questions. If you are unable to answer a part of a specific question, keep a space to attempt it later
- Don't be stuck up in a particular problem. Leave it for a moment, attempt another question and come back to the question later

Why Understanding Basics?

> Build your confidence level
> Immensely benefit you in your day to day banking affairs
> Help in understanding problems and finding solutions
> Increase the possibility of your success rate in the exam
> Increase your professional skill (Knowledge Vs. Degree)
> Help to grow your career

Understanding the Basics

Management Accounting, Financial Accounting and Cost Accounting :

Management Accounting	Financial Accounting	Cost Accounting
Deals with collection of data and information, classification and analysis for helping the management to make managerial decision	Deals with preparation of Profit and Loss Account and Statement of Financial Position in a specific time interval	Deals with determination of cost of a product/services, cost control and analysis of cost/expenditure for helping management to make decision
It is related with present, past and future	It is only related with past thus it is like a postmortem report	It is a part of management accounting
There is no regulatory timeframe to prepare management accounting report	It is prepared in a regular interval and there is a regulatory requirement; like yearly, semiannually, quarterly etc.	It is prepared as and when required basis
It does not require auditing and mathematical accuracy is also not required	It requires mathematical accuracy and mandatory requirement for auditing	No such requirement of mathematical accuracy and auditing

Understanding the Basics

Cost Elements

Costs and Cost Elements:

- Cost is the amount of expenditure which is either incurred (actual) or notional (attributable) relating to a specific thing or activity. Cost can be classified from different dimensions:

A. Natural Characteristics:

i. Raw Materials is the main component of production process.

Direct Raw Material- Fabric for Garments Industry, Wood for Furniture, Cotton for Spinning Industry etc. Indirect Raw Material- Yarn, accessories for Garments Industry
ii. Labour includes both wages and salaries for workers and employees Direct Labour- Directly related with production; like wages for workers Indirect Labour -Not directly related with production; like salary of the factory employees
iii. Other Expenses includes costs other than raw materials and labour for conversion to finished goods Direct Expenses-Electricity, gas, water, depreciation of machineries, maintenance relating to production Indirect Expenses- Factory rent, depreciation of other machineries etc.

Understanding the Basics

coss Accounding

Costs and Cost Elements:

B. Changes in the Level of Activity:

i. Fixed Cost is the cost that does not change or remain unchanged at the change (increase/decrease) of the production level. Example- Factory Rent
ii. Variable Cost is the cost that is proportionate to the change in production level. Example- Raw material
iii. Semi-Variable Cost is the cost that changes with production level at a disproportionate rate.

Example-Depreciation of machineries and maintenance cost etc.
C. Nature of Function:
i. Production Cost: The costs that are directly related with production
=Direct Material+ Direct Labour+ Direct Expenses+ Other factory overheads
ii. Administrative Expenses: All indirect expenses relating to administration and management.

Example-Salary and allowances of employees
iii. Selling \& Distribution Expenses- Advertisement cost, salary/commission of selling agent/employee Freight out, Salary of distribution agent etc.

Understanding the Basics

Costs and Cost Elements: Cost Sheet

coss Accounding

 Elements of cost -Material Direct? -Labour Indirect? -Overhead1. Prime Cost: Costs Directly Related with Production
(Direct Materials*+ Direct Labour+ Direct Expenses)
*Direct Materials= (a) Opening Stock Raw Materials
(+) Purchase of Raw Materials
(-) Purchase Discounts
(-) Purchase Returns
(+) Carriage in/ Freight In
(b) Cost of Purchase
(a)+(b) = Cost of Raw Materials Available for Use
(c) (-) Closing Stock of Raw Materials
(a)+(b)-(c) = Direct Materials Consumed

Understanding the Basics

coss Accounding

Elements of cost

Costs and Cost Elements: Cost Sheet

2. Total Manufacturing Cost: Prime Cost + Total Factory Overheads*
*Factory Overheads= All factory related costs that are not directly related with production
(Indirect Materials, Indirect Labor, Factory Fuel and Power, Coal, Gas, Water, Factory Manager's Salary, Factory Rent \& Taxes, Factory Lighting and Fighting, Factory Repairs, Worker's Welfare Expenses, Insurance Premium for Factory, Depreciation of Plant \& Machineries)
3. Cost of Goods Manufactured $=$ Total Manufacturing Cost
(+) Beginning Work-in-Process (WIP) Inventory
(-) Closing Work-in-Process (WIP) Inventory
4. Cost of Goods Sold (COGS) $=$ Cost of Goods Manufactured
(+) Beginning Finished Goods Inventory
(-) Closing Finished Goods Inventory
5. Total Costs
= Cost of Goods Sold+ Administrative Expenses+ Selling Expenses

Understanding the Basics

Contribution Margin, BEP and Margin of Safety

Breakeven Point:

In accounting, the breakeven point is the production level at which total revenues equal total expenses. That is, it is a no profit, no loss situation

- Blue dotted line indicates fixed cost
- Yellow dotted line indicates
variable cost
- Orange Line shows total cost; i.e.,
variable cost+ Fixed Cost
- Green Line shows total revenue
- The Point at which total revenue line intersects with total cost line is the breakeven point

BREAK EVEN POINT GRAPH

Understanding the Basics

Contribution Margin (C/M), BEP and Margin of Safety

C/M= (Sales-Variable Cost) or C/M Per Unit= (Sales/unit-Variable Cost/unit)
C/M Ratio= (Sales-Variable Cost)/Sales [C/M Ratio is also known as Profit Volume (P/V) Ratio]
Breakeven Sales in Tk. = Fixed Cost/Contribution Margin Ratio
Breakeven Sales in Unit = Fixed Cost/C/M Per Unit
Margin of Safety (M/S) in Tk. =Sales-EBP Sales
Margin of Safety (M/S) Ratio = Margin of Safety/Sales
Required Sales (Value) for Desired Profit = (Fixed Cost+ Desired Profit)/C/M Ratio Required Sales (Unit) for Desired Profit $=($ Fixed Cost+ Desired Profit)/C/M per unit

Understanding the Basics

Costing: Absorption Costing Vs. Marginal/Variable Costing

Absorption Costing:
Absorption costing is a method for accumulating fixed and variable costs associated with the production process and apportioning them to individual products. Thus, a product may absorb a broad range of costs.

Absorption Costing Components:
Direct Materials: Those materials that are included in a finished product.
Direct Labour: The factory labor costs required to construct a product.
Variable Manufacturing Overhead: The costs to operate a manufacturing facility, which vary with production volume. Examples are supplies and electricity for production equipment.
Fixed manufacturing Overhead: The costs to operate a manufacturing facility, which do not vary with production volume. Examples are rent and insurance.

Understanding the Basics

Costing: Absorption Costing Vs. Marginal/Variable Costing

Marginal/Variable Costing:

Variable costing is a concept used in managerial and cost accounting in which the fixed manufacturing overhead is excluded from the product-cost of production. It includes only the variable costs associated with the production process.

```
Variable Costing Components:
Direct Materials: Those materials that are included in a
finished product.
Direct Labour: The factory labor costs required to
construct a product.
Variable Manufacturing Overhead: The costs to
operate a manufacturing facility, which vary with
production volume. Examples are supplies and
electricity for production equipment.
Fixed manufacturing Overhead: Excluded from
Variable Costing Method
```


Understanding the Basics

Absorption Costing Vs. Marginal/Variable Costing: Differences

Areas of Differences	Marginal Costing/Variable Costing	Absorption Costing
Product Costing and Inventory Valuation	For product costing \& inventory valuation, only variable cost is considered	For product costing \& inventory valuation, both fixed \& variable costs are considered.
Implication of Fixed Cost on Profitability of Products	 profitability of different products is judged by Profit/Volume ratio (P/V ratio)	Fixed cost is charged to cost of production. A reasonable share of fixed cost is to be borne by each product \& thereby subjective apportionment of fixed overheads influences the profitability of product.
Presentation of Data	The presentation of data is so oriented that total contribution \& contribution from each product gets highlighted.	The presentation of cost data is on conventional pattern. After deducting fixed overhead, the net profit of each product is determined.
Implication of Opening and Closing Stock on unit cost of Production	The unit cost of production does not get affected by the difference in the magnitude of opening stock \& closing stock.	Due to the impact of the related fixed overheads, the unit cost of production get affected by the difference in the magnitude of opening stock \& closing stock.

Understanding the Basics

Effects of Opening \& Closing Stock on Profit: Absorption Vs. Marginal Costing

1. The results under both the methods will be same in situations where sales \& production coincide i.e., there is neither opening stock nor closing stock.
2. Profit under absorption costing will be more than the profit under marginal costing, when closing stock is more than the opening stock (Example with Calculation in the Next Slide). The reason behind this is that, under absorption costing, a portion of fixed overhead, instead of being charged to the current period, is charged to the closing stock \& carried over to the next period.
3. Profit shown under absorption costing will be lower than the profit shown under marginal costing, when closing stock is less than the opening stock. The reason behind this is that, under absorption costing, to the current period, a portion of fixed cost related to previous year is charged.

Understanding the Basics

Effects on Profit: Absorption Vs. Marginal/Variable Costing

ABSORPTION COSTING			
Particulars	Qty	Per Unit	Amt (\$)
Revenue	600	100.00	60,000
Less: Cost of Goods Sold:			
Add Beginning Inventory	-	-	
Variable Manufacturing Costs	900	20.00	18,000
Allocated Fixed Manufacturing Costs	900	20.00	18,000
(\$13000/9000 Unts or Production -20)			
Cost of Goods Available for Sale		40.00	36,000
Deduct Ending Inventory	300	40.00	$(12,000)$
Cost of Goods Sold	600	40.00	24,000
Gross Margin			
Variable Marketing Costs	600	60.00	36,000
Fixed Marketing Costs			
	600	16.50	9,900
Operating Income	600	23.33	14,000

VARIABLE COSTING			
Particulars	Qty	Per Unit	Amt (\$)
Revenue	600	100.00	60,000
Less: Variable Cost of Goods Sold:			
Add Beginning Inventory	-	-	
Variable Manufacturing Costs	900	20.00	18,000
			-
Cost of Goods Available for Sale		20.00	18,000
Deduct Ending Inventory	300	20.00	$(6,000)$
Variable Cost of Goods Sold	600	20.00	12,000
Variable Marketing Costs	600	16.50	9,900
Contribution Margin	600	63.50	38,100
Fixed Marketing Costs	600	23.33	14,000
Fixed Manufacturing Costs			18,000
Operating Income			6,100

Reconcile
18,000
$(6,000)$
$(9,900)$
9,900
$(18,000)$
6,000

Understanding the Basics

Budget: Master, Fixed, Flexible Budget and Cash Budget

Budget:

A budget is a financial plan for a defined period, often for one year. It may also include planned sales volumes and revenues, resource quantities, costs and expenses, assets, liabilities and cash flow

What is a Master Budget?
The master budget is the aggregation of all lower-level budgets produced by a company's various functional areas, and also includes budgeted financial statements, a cash forecast, and a financing plan.

The Master Budget: An Overview

Fixed Budget Vs. Flexible Budget:
A fixed budget is a budget that doesn't change due to any change in activity level or output level. The fixed budget is static and doesn't change at all.

The flexible budget is a budget that changes as per the activity level or production of units.

Understanding the Basics

Budget: Master, Fixed, Flexible Budget and Cash Budget

Cash Budget:

A cash budget is an estimation of the cash inflows and outflows of a business over a specific period of time. This could be for a weekly, monthly, quarterly, or annual budget. This budget is used to assess whether the entity has sufficient cash to continue operating over the given time frame.

Importance of Cash Budget:

- It allows a company to establish the amount of credit that it can extend to customers without having problems with liquidity.
- A cash budget helps avoid a shortage of cash during periods in which a company encounters a high number of expenses.

Components of Cash Budget:
The cash budget represents a detailed plan of future cash flows and is composed of four elements:

1. Cash Receipts (Cash Sales, Collection of Receivables, Other Income)
2. Cash Payments (Raw Materials, Payroll, Other Direct Expenses, Administrative and Selling Expenses, Plant and Equipment and other payments
3. Net Change in Cash for the Period and
4. New Financing Needed

Understanding the Basics

Financial Statement Analysis

> Financial Statement Analysis:

- Financial statement analysis is the process of analyzing a company's financial statements for decisionmaking purposes.
- External stakeholders use it to understand the overall health of an organization as well as to evaluate financial performance and business value.
- Internal users use it as a monitoring tool for managing the finances as well as internal decision making.
> Techniques Used for Financial Statement Analysis:

1. Horizontal Analysis (Compares data horizontally, by analyzing values of line items across two or more years)
2. Vertical Analysis (Vertical analysis looks at the vertical affects line items have on other parts of the business and also the business's proportions)
3. Ratio Analysis (Ratio analysis uses important ratio metrics to calculate statistical relationships)
> Components of Financial Statements:
4. Balance Sheet 2. Profit \& Loss Statement 3. Cash flow Statement

Understanding the Basics

Financial Statement Analysis

What is Ratio Analysis?

Ratio analysis is a quantitative method of gaining insight into a company's liquidity, operational efficiency, solvency and profitability by studying its financial statements such as the balance sheet and income statement.

Comparisons of Ratio Analysis:

1. Internal Comparison: The analyst can compare a present ratio with past and expected future ratio for the same company. When financial ratios are arrayed over a period of years, the analyst can study the composition of change and determine whether there has been an improvement or deterioration in the firm's financial condition and performance over time.
2. External Comparisons and Sources of Industry Ratio: External comparison involves comparing the ratio of one firm with those of similar firms (peer) or with industry averages at the same point in time. Such a comparison gives insight into the relative financial condition and performance of the firm. It also helps us identify any significant deviations from any applicable industry average/peer average

Understanding the Basics

Financial Statement Analysis
Dimensions of Ratio Analysis:

Financial Statement Analysis

Dimensions of Ratio Analysis: Profitability
Profitability ratios measure a company's ability to generate income relative to revenue, balance sheet assets, operating costs, and equity.

Ratio	Formula	Desired	Interpretation
Gross Profit Margin (\%)	Gross Profit / Net Sales		Show how much profit a company makes from its net sales after paying its cost of goods sold
Operating Profit Margin (\%)	Operating Profit/ Net sales		Compares the operating income of a company to its net sales to determine operating efficiency
Net Profit Margin (\%)	Net Profit/ Net Sales		Compares net profit of the company to its net sales to determine the bottom line performance
Return of Assets (ROA) (\%)	Net Profit/ Total Assets		Measures how efficiently a company is using its assets to generate profit
Return on Equity (ROE) (\%)	Net Profit/ Shareholders' Equity		Measures how efficiently a company is using its equity to generate profit

Industry Average (NPM)

Industry	Net Profit Margin (\%)
Spinning	$5-7$
Weaving	$4-6$
Composite Knitting	$5-6$
Woven Garments	$4-6$
Sweater	$5-6$
Home Textile	$4-6$
Cement	$5-6$
Real Estate- Construction	$11-13$
Jute Spinning	$3-5$
Pharmaceutical- Medicine	$7-8$
Steel Re-rolling	$3-4$
Power Generation	$25-30$

Financial Statement Analysis

Dimensions of Ratio Analysis: Liquidity
Liquidity ratios are financial ratios that measure a company's ability to repay short-term obligations. It indicates the short-term solvency of the company.

Ratio	Formula	Desired	Interpretation
Current Ratio (Times)	Current assets / Current liabilities		
Quick Ratio (Times)	Measures a company's ability to pay off short-term (Current assets - Inventories) / Current liabilities/obligations with current assets		
Cash Ratio (Times)	Cash and Cash equivalents / Current Liabilities	Measures a company's ability to pay off short-term	
liabilities/obligations with quick assets			

Financial Statement Analysis

Dimensions of Ratio Analysis: Solvency

Solvency ratios are financial ratios that measure a company's ability to survive in the long run. It measures the company's leverage structure and it's debt payment capacity

Ratio	Formula	Desired	Interpretation
Debt to Equity (Times)	Total Debt/ Shareholders Equity		Assess the extent to which the firm is using borrowed money or external financing
Debt to Total Assets (\%)	Total Debt/ Total Assets		Relative importance of debt financing to the firm by showing the percentage of the firm's assets that is supported by debt financing.
Interest (Finance Cost)	 Tax(EBIT)/Interest Expenses or Coverage Ratio (Times)	Measure the firm's ability to meet its interest payments and thus avoid bankruptcy	
Debt Service Coverage	Operating Profit/Total Debt Service		Measure the firm's ability to meet its financial obligations from it operating profit
Ratio (Times)			

Industry Average (LR)

Industry	Leverage ratio (X)
Spinning	$1.50-2.00$
Weaving	$1.60-1.75$
Composite Knitting	$1.75-2.00$
Woven Garments	$1.50-1.70$
Sweater	$0.75-1.00$
Home Textile	$1.75-2.00$
Cement	$1.00-1.50$
Real Estate- Construction	$3.50-3.75$
Jute Spinning	$1.00-1.50$
Pharmaceutical- Medicine	$0.75-1.00$
Pharmaceutical- Infusion	$2.50-2.75$
Steel Re-rolling	$2.50-2.75$
Power Generation	$1.00-1.25$

Financial Statement Analysis

Dimensions of Ratio Analysis: Efficiency/Turnover Ratio

Efficiency ratios, also known as activity financial ratios, are used to measure how well a company is utilizing its assets and resources.

Ratio	Formula	Interpretation	Desired
Receivable Turnover (Times) Average Collection Period (Days)	Annual Net Credit Sales/Receivable (Receivables * No of Days in a Year)/Annual Net Credit Sales	Provides insight into the quality of the firm's receivables and how successful the firm is in its collections.	
Inventory Turnover (Times) Inventory Turnover in Days	Cost of Goods Sold/Inventory (Inventory * No of Days in a year)/Cost of Goods sold	Determine how effectively the firm is managing inventory	
Operating Cycle Cash Cycle	Receivable Turnover in Days+ Inventory Turnover in Days Receivable Turnover in Days+ Inventory Turnover in Days- Payable Turnover in days		

Understanding the Basics

Financial Statement Analysis

Dimensions of Ratio Analysis: Earnings/Market Value Ratio

Market value ratios are used to evaluate the share price of a company's stock.

Ratio	Formula	Interpretation
Dividend Yield Ratio (\%)	Dividend per share / Share price	The dividend yield ratio measures the amount of dividends attributed to shareholders relative to the market value per share
Earnings per Share Ratio (Tk.)	Net Profit After Tax/ No of Shares Outstanding	The earnings per share ratio measures the amount of net income earned for each share outstanding
Price-Earnings Ratio (Times)	Share Price / Earnings Per Share	The price-earnings ratiocompares a company's share price to its earnings per share

Identification of Problem is the Half of Solution

Problems \& Solutions

1. Following data are collected from the record of a manufacturing concern:

Particulars
Raw material used
Work in Process (01.06.2019)
Work in Process (30.06.2019)
Finished Goods (01.06.2019)
Finished Goods (30.06.2019)
Direct Wages
Direct Expenses
Factory Indirect Material
Factory Labour
Administrative Expense:
Fixed
Variable
Selling Expenses:
Fixed
Variable
Profit

Amount in Tk.

25,000
40,000
60,000
150,000
75,000
1,300 Hours @ Tk. 30 per Hour
82,000
52,000
80,000

50,000
10% of Prime Cost

5\% of Cost of Goods Manufactured

Requirements?

1. Prime Cost
2. Factory Production Cost,
3. Cost of Goods Manufactured,
4. Cost of Goods Sold
5. Total Cost
6. Sales

47

Ref	Calculation of Cost		Amount in Tk.
1	Raw Material used		25,000
2	Direct Wages	(1300*30)	39,000
3	Direct Expenses		82,000
4	A. Prime cost (1+2+3)		146,000
5	Factory Overheads		
6	Indirect Material		52,000
7	Factory Labour		80,000
8	Total Factory Overheads (6+7)		132,000
9	B. Total Manufacturing Cost (4+8)		278,000
10	+WIP (BB)		40,000
11	-WIP (CB)		60,000
12	C. Cost of Goods Manufactured (9+10-11)		258,000
13	+Finished Goods(BB)		150,000
14	-Finished Goods (CB)		75,000
15	D. Cost of Goods Sold (12+1314)		333,000
16	Fixed Administrative Expenses	50,000	
17	Variable (10\% of Prime Cost)	14,600	
18	Total Administrative Expenses (16+17)		64,600
19	Fixed Selling Expenses	30,000	
20	Variable (5\% of COGM)	12,900	
21	Total Selling Expenses (19+20)		42,900
22	E. Total Cost ($15+18+21$)		440,500
23	\|F. Sales [Total Cost/(1-Profit Rate]		489,444

Problems \& Solutions

2. a) What do the liquidity ratios indicate? Why acid-test ratio is considered as a better indicator of liquidity?
b) Selected financial ratios for XYZ Company and the industry average are as follows:

Ratios	Firm	Industry
Current ratio	$3.2 x$	$2.5 x$
Acid-test ratio	$1.75 x$	$1.9 x$
Debt to assets	23%	33%
Inventory turnover	$5.5 x$	$8.7 x$
Average collection period	33 days	40 days
Net profit margin	3.80%	3.50%
Return on investment	11.50%	9.75%

Requirements:

1. Evaluate the overall health of the firm compared to industry under different broad dimensions (Liquidity, Solvency, Activity and Profitability) of financial statement analysis.
2. What other information do you require to make a comprehensive analysis?

2 (b) (1)			$\frac{3}{3}$
Indicators	Firm	Industry	Remarks : Solut
A. Liquidity Dimension:	Assesses the ability to repay short-term obligations		
1. Current Ratio	3.20x	2.5 x	Company's position is better than the industry indicating higher capacity to meet short term obligations
2. Acid Test Ratio	1.75x	1.9x	It indicates that the firm maintains higher inventory than industry which might put pressure on cash mgt.
B. Solvency Dimension:	Measure the ability to survive in the long-run by analyzing capital structure and debt repayment capacity		
1. Debt to Assets Ratio	23\%	33\%	Leverage structure is better indicating relatively less reliance on external financing/borrowing
C. Activity Dimension:	Measure how well a company is utilizing its assets and resources		
1. Inventory Turnover	5.5 x	8.7 x	It indicates that the company maintains huge inventories
2. Average Collection Period	33 days	40 days	It indicates better receivable mgt. compared to industry
D. Profitability Dimension:	Ability to generate income relative to revenue, BS assets, operating costs and equity		
1. Net Profit Margin	3.80\%	3.50\%	Overall profitability dimension is good compared to industry. This might be due to less reliance on external borrowing (low finance cost), Operational efficiency etc.
2. Return on Investment	11.50\%	9.75\%	

2 (b) (2)

- Due to insufficiency of data, a good number of analysis could not be carried out.
- If we could calculate the gross profit margin and operating profit margin along with the peer/industry data, we would be able to identify the profitability strength of the company;
- Although, we have given debt to total assets ratio, it gives a partial view of the leverage structure of the firm. In order to get a complete structure, we need to calculate interest/finance cost service coverage ratio as well as debt service coverage ratio
- Some other activity ratio could be analyzed like, operating cycle, cash cycle etc. to get a complete idea about tied up period in working capital cycle.
- It is not clear whether the company is a listed one; if so, it is required to get earning ratio/market ratio which may include, but not limited to, dividend yield ratio, price-earning ratio, earning per share etc. to learn about the market perception.

This is not exhaustive list. You can add more points

Problems \& Solutions

3. a) How do the following reflect in break-even volume and P / V (or C / M) ratio?
4. Increase in Fixed Cost;
5. Increase in Sales;
6. Decrease in Variable Cost per Unit;
7. Expansion of Factory Building;
8. Decrease in Selling Price per Unit

Particulars	Effects on Break-even Volume	Effects on P/V Ratio
Increase in Fixed Cost	BE Volume=Fixed Cost/CM per Unit Therefore, BE Volume will increase	P/V Ratio=Sales-VC No effect on P/V Ratio
Increase in Sales	No effect	No effect on P/V Ratio
Decrease in Variable Cost/unit	Increase the C/M; Therefore, BE Volume reduces	Increase in P/V Ratio
Expansion of Factory Building	Increase fixed cost, Thus increase BE Volume	No effect on P/V Ratio
Decrease in Selling Price/Unit	Decrease the C/M Therefore, BE Volume increases	Decreases in P/V Ratio

Problems \& Solutions

3. (b) XYZ Company sells product ' X ' at Tk. 500 per unit. The variable cost per unit is Tk. 200 while fixed cost is Tk.110,000 per month. Based on the above information, calculate the following:
4. Calculate the break-even point of sales units for a month;
5. Calculate the profit/(loss) for a month if 500 units are sold;
6. Calculate the sales revenue to earn a profit of Tk.5,000;
7. Calculate the Margin of Safety if 400 units are sold;
8. Calculate the break-even point of sales if the selling price is increased by 10%

```
1. Break-even Point Sales (Unit)
CM Per Unit=(Sales Per Unit-VC Per Unit)
    = Tk.(500-200)=Tk. 300
```

Break-even Point Sales (Unit)=Fixed Cost/CM Per Unit)
(110,000/300) Units=366.67 Units or 367 Units
2. Profit/Loss if 500 Units are sold
Profit=Sales- Variable Cost- Fixed Cost
=Tk. (500*500)-(500*200)-110,000
=TK.40,000
3. Sales Revenue to Earn Profit of Tk. 5,000
=(Fixed Cost +Desired Profit)/CM Ratio
CM Ratio=
(Sales-VC)/Sales
$=(500-200) / 500$
$=0.60$

Therefore, Sales Revenue to Earn Profit of Tk. 5,000
$=(110,000+5000) / 0.60$
= Tk. 191,667
4. Margin of Safety= Sales-Break-even Sales
$(400 * 500)-(367 * 500)=$ Tk. 16,500
5. Break Even Sales if Selling Price is increased by 10\%

Selling Price at 10\% increase=TK. 550
Revised Contribution Margin=(550-200) $=$ Tk. 350
CM Ratio=350/550=
Break-even Sales (Volume)=Fixed Cost/CM Ratio

Problems \& Solutions

4. You have been assigned with the responsibility to prepare a cash budget for XYZ Company to evaluate the cash requirements. The following data are available:

Months	Sales	Raw Materials	Wages	Overheads
January, 2021	100,000	50,000	10,000	22,000
February, 2021	110,000	60,000	11,000	22,000
March, 2021	120,000	70,000	12,000	25,000
April, 2021	130,000	80,000	13,000	28,000
May, 2021	140,000	90,000	14,000	30,000
June, 2021	150,000	100,000	15,000	33,000

Credit Terms:

- Period of credit allowed by material supplier-2 months
- Lag in payments of overheads- 1 month
- No Lag in payment of wages

Other Information:

- Plant to be installed in January at a cost of Tk. 50,000 and will be paid on monthly @ Tk.10,000 from 01 February, 2021.
- Extensions to research department at a cost of Tk. 10,000 will be completed on March and payment to be made in April.
- Quarterly Depreciation of Plant shall be charged for Tk. 5000 in June, 2021
- Cash sales is estimated at 50% of total sales. 20% of credit sales will be received in the month following sale and 20% of credit sale in the next month while rest 10% will not be recoverable.
- Payment of Tk. 10,000 is to be made under a hire purchase contract throughout the budgeted period
- Dividend from investment of Tk.50,000 is expected to be received in June, 2021
- Tax of Tk.100,000 is due on 30 June 2021
- Cash Balance on 01 April is Tk. 100,000

Requirement: Prepare a month-wise cash budget for quarter ended June, 2021

Problems \& Solutions

5. Daffodil company produces and sells a single product line, Wooden Toy Box, Selected cost and operating data relating to the products are given below:

Selling Price per Unit	50.00
Manufacturing Costs:	
Variable cost per unit produced:	11.00
Direct materials	6.00
Direct labor	3.00
Variable overhead	$120,000.00$
Fixed Cost per year	
Selling and Administrative costs:	5.00
Variable per unit sold	$\mathbf{7 0 , 0 0 0 . 0 0}$
Fixed per year	

Units Details	Year 1	Year 2
Beginning inventory	-	2,000
Product produced during the year	10,000	6,000
Product sold during the year	8,000	8,000
Ending inventory	2,000	-

Requirements:

1. Compute an Income Statement for each year assuming that the company uses absorption costing
2. Compute an Income Statement for each year assuming that company is uses direct costing
3. Reconcile the direct costing and absorption costing net income figure

Income Statement: Using Absorption Costing				
Particulars		Year 1		Year 2
Sales (8000 Units* Tk.50)		$\mathbf{4 0 0 , 0 0 0}$		400,000
Cost of Goods Sold:				
Beginning Inventory	-		64,000	
+Cost of goods manufactured (10,000*20) [Y1] (6000*20)[Y2]	200,000		120,000	
+ Fixed cost per year	120,000		120,000	
Cost of Goods Available for Sale	320,000		304,000	
-Ending Inventory	64,000		-	
Cost of Goods Sold		$\mathbf{2 5 6 , 0 0 0}$		$\mathbf{3 0 4 , 0 0 0}$
Gross Profit (Sales-COGS)		144,000		96,000
Less: Selling and administrative Costs				
Variable Sales and Admin (8000*5)	40,000		40,000	
Fixed cost per year	70,000		70,000	
		110,000		110,000
Net Profit		$\mathbf{3 4 , 0 0 0}$		$\mathbf{(1 4 , 0 0 0)}$

Solutions

Ending inventory Calculation:

Variable Cost $=2,000^{*} 20=40,000$
Proportionate fixed cost/unit= 120,000/10,000=12; Fixed Cost= 2,000*12=24,000

Selling Price per Unit		50.00
Manufacturing Costs:		
Variable cost per unit produced:		
Direct materials		11.00
Direct labor		6.00
Variable overhead		3.00
Fixed Cost per year		120,000.00
Selling and Administrative costs:		
Variable per unit sold		5.00
Fixed per year		70,000.00
Units Details	Year 1	Year 2
Beginning inventory	-	2,000
Product produced during the year	10,000	6,000
Product sold during the year	8,000	8,000
Ending inventory	2,000	-

Ending Inventory $=\left(2,000^{*} 20\right)+(2,000 * 12)=40,000+24,000=64,000$

Income Statement: Using Direct/Variable Costing				
Particulars		Year 1		Year 2
Sales (8000 Units * Tk.50)		$\mathbf{4 0 0 , 0 0 0}$		$\mathbf{4 0 0 , 0 0 0}$
Variable Expenses				
Beginning Inventory			40,000	
Cost of goods manufactured (10,000*20)[Y1] (6000*20)[Y2]	200,000		120,000	
(-)Ending Inventory (2,000*20)	$(40,000)$			
Cost of Goods Sold		$\mathbf{1 6 0 , 0 0 0}$		$\mathbf{1 6 0 , 0 0 0}$
Contribution Margin		$\mathbf{2 4 0 , 0 0 0}$		$\mathbf{2 4 0 , 0 0 0}$
(+)Variable Sales and Administrative (8,000*5)		40,000		40,000
Fixed Expenses:				
Fixed overhead cost	120,000		120,000	
Fixed Selling and admin Costs	$\underline{70,000}$		70,000	
		190,000		$\underline{190,000}$
Net Profit		$\mathbf{1 0 , 0 0 0}$		$\mathbf{1 0 , 0 0 0}$

Selling Price per Unit		50.00
Manufacturing Costs:		
Variable cost per unit produced:		
Direct materials		11.00
Direct labor		6.00
Variable overhead		3.00
Fixed Cost per year		120,000.00
Selling and Administrative costs:		
Variable per unit sold		5.00
Fixed per year		70,000.00
Units Details	Year 1	Year 2
Beginning inventory	-	2,000
Product produced during the year	10,000	6,000
Product sold during the year	8,000	8,000
Ending inventory	2,000	-

Reconciliation	Year 1	Year 2
Net Profit under Direct Costing	10,000	10,000
+ Ending Inventory $(64,000-40,000)$	24,000	-
- Beginning Inventory		24,000
Income under Absorption Costing	34,000	$(14,000)$

Selling Price per Unit	50.00
Manufacturing Costs:	
Variable cost per unit produced:	
Direct materials	11.00
Direct labor	6.00
Variable overhead	3.00
Fixed Cost per year	$120,000.00$
Selling and Administrative costs:	
Variable per unit sold	5.00
Fixed per year	$70,000.00$

Units Details	Year 1	Year 2
Beginning inventory	-	2,000
Product produced during the year	10,000	6,000
Product sold during the year	8,000	8,000
Ending inventory	2,000	-

COACHING CLASS ON

Management Accounting

\& Financial Management

Khaled Mahmud Raihan FCCA Senior Vice President
Managing Director's Relationship Office Islami Bank Bangladesh Ltd.

Summary of Course Contents

Financial Management:

1. Time Value of Money:

Concept of Present Value, Future Value, Annuity, Perpetuity, Islamic Concept of Time Value of Money
2. Capital Budgeting:

Non Discounted Cash flow Techniques: Accounting Rate of Return (ARR), Pay Back Period (PPB) Discounted Cash flow Techniques: NPV, IRR, PI, Capital Rationing and their Applications on Business
3. Working Capital Management, Short, Medium and Long Term Finance:

Different Financing Mix: Short Term Financing Vs. Long Term Financing
4. Lease Financing:

Types of Lease Financing: Operating Lease Vs. Financial Lease, HPSM and their Implications
5. Cost of Capital and Dividend Policy:

Components of Cost of Capital: Cost of Common Stock, Cost of Preferred Stock and Cost of Debt Weighted Average Cost of Capital, Marginal Cost of Capital, Cost of Capital in Islam
Types of Dividend Policy, Factors influencing Dividend Policy, Rationale of High and Low Pay-Out Ratio

Understanding the Basics

Time Preference Theory:

Which would you prefer- Tk. 1000 today or Tk. 1000 after one year from now?
Common sense tells us to take the Tk. 1000 today because we recognize that there is a time value of money. The concept of preference is known to as "Time Preference Theory".

1. Consumption: Human being, by nature, prefers current consumption to future consumption. If he/she is refrained from current consumption, he/she will obviously require some compensation.
2. Uncertainty: Uncertainty is another argument behind the time preference theory. Future is always uncertain. If we allow for uncertainty surrounding cash flows to enter into our analysis, it will be necessary to add a risk premium as compensation for uncertainty.
3. Investment opportunity: Investment opportunity should also be taken into consideration because there is an opportunity cost of money.
4. Inflation: This is the most important argument behind the time preference theory. The purchasing power of people reduces in the passage of time due to inflation. You cannot purchase as many goods after one year with Tk. 1000 as you can purchase today with the same amount of money.

Understanding the Basics

Time Value of Money: Key Concepts

The Interest/Profit Rate: Money paid or earned for the use of money is called interest. Another to say, it is the cost of using money. That is, it is the additional amount of money gained between the beginning and the end of a time period.

Future Value (Terminal Value): The value at some future time of a present amount of money, or a series of payments, evaluated at a given interest/profit rate. This future value will include both the principal amount and the interest/ profit amount.

Present Value: is the value of an expected income stream determined as of the date of valuation. The present value is usually less than the future value because money has interest/profit-earning potential

Compounding: Compounding is the process whereby interest/profit is credited to an existing principal amount as well as to interest/profit already paid.

Understanding the Basics

Time Value of Money: Key Concepts

Present Value to Future Value:

$F V_{n}=P V_{0}(1+i)^{n}$
Where,
$\mathrm{FV}_{\mathrm{n}}=$ Future value after n period.
$\mathrm{PV}_{0}=$ Present value or initial investment.
$\mathbf{i}=$ Interest/Profit rate.
$\mathrm{n}=$ Number of years.
Example: At the end of ten years, how much is an initial deposit of Tk. 100 worth, assuming a compound annual interest rate 8\%?

Solution:

We know,

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{n}} & =\mathrm{PV} \mathrm{~V}_{0}(1+\mathrm{i})^{\mathrm{n}} \\
\mathrm{FV} \mathrm{~V}_{10} & =100(1+.08)^{10} \\
& =100(2.1589)_{\text {[Take at least four digit after points at the time of using formula] }} \\
& =T k .215 .89
\end{aligned}
$$

So you will have an amount of Tk.215.89 at the end of ten years if you get a compound interest rate of 8% compounded yearly.

Understanding the Basics

Time Value of Money: Key Concepts

Time Value
of Money

Instead of using the formula, you can use table value to solve the problem.

$$
F V_{n}=P V_{0}\left(F V I F_{i, n}\right)
$$

Let us solve the above problem through using the table value.

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{n}} & =\mathrm{PV}_{0}\left(\mathrm{FVIF}_{i, n}\right) \\
\mathrm{FV}_{10} & =100\left(\mathrm{FVIF}_{8 \%,}, 10 \text { years }\right) \\
& =100(2.159) \text { [Using the table value] } \\
& =\text { Tk.215.90 }
\end{aligned}
$$

* FVIF=Future Value Interest Factor

Futire valoe interent factoss of a mixed tream caih flow

Perod	15	25	3 K	4 N	51	65	7	85	95	40 K
1	1.010	1.090	1.010	1040	1.050	1.000	1.070	1.000	1000	1.100
2	1020	1.040	1.061	1082	1.103	1.124	1145	1.106	1.188	1210
1	1070	1.081	1.091	1128	1.158	1.191	1228	1.200	1.785	1.114
4	1041	1032	1126	1.170	1.215	1.262	1311	1.360	1.412	1.454
5	1.951	1104	1.350	1.217	1.276	1.139	1.403	1.49)	1.579	1.618
E	1062	1.136	1.194	1.765	1.345	1.419	1581	1.588	1.677	1.772
3	$1 / 272$	1.145	1.730	1.315	1007	1504	1066	1.714	1378	1.449
8	1081	1.172	1.267	1.369	1.472	1594	1.73	1.85t	1.593	2.194
5	1.094	1195	1.205	1423	L.S51	1699	1838	1.999	2.172	2.358
10	1.505	1.75	1.765	1.450	1.62\%	1.70	1.967	2.159	2.167	2.594
11	± 116	1.243	1.184	15399.	1.710	18%	2.105	2.332	2550	28853
12	1127	1234	1.428	1601	1.75	2.012	2.252	2.54	2 m	118
13	1.138	1.294	1469	1.685	1.858	2.133	2410	2.720	1.065	1452
14	1.49	1.319	1.513	1772	1.880	2.261	2579	2.937	3.342	1.797
15	1.861	1.346	1.558	1.361	2.07	2.197	2.759	1.172	3, 662	4.17

Understanding the Basics

Time Value of Money: Key Concepts

Future Value to Present Value:
We Know from formula(1), $\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0}(1+\mathrm{i})^{\mathrm{n}}$
Rearranging the term, we can solve it for present value-

$$
\begin{equation*}
\mathrm{PV}_{0}=\mathrm{FV}_{\mathrm{n}}\left[1 /(1+\mathrm{i})^{n}\right] . \tag{2}
\end{equation*}
$$

So we can find out the present value of Tk. 2000 after 10 years at 8% discount rate.

$$
\begin{aligned}
\mathrm{PV}_{0} & =\mathrm{FV}_{\mathrm{n}}\left[1 /(1+\mathrm{i})^{\mathrm{n}}\right] \\
\mathrm{PV}_{0} & =2000\left[1 /(1+.08)^{10}\right] \\
\mathrm{PV}_{0} & =2000\left[1 /(1+\mathrm{i})^{\mathrm{n}}\right] \\
& =2000(0.4631) \\
& =\operatorname{Tk} .926
\end{aligned}
$$

We can also solve the problem by using table value:

$$
\begin{aligned}
\mathrm{PV}_{0} & =\mathrm{FV}_{10}\left(\mathrm{PVIF}_{8 \%, 10} \text { years }\right) \\
& =2000(0.463) \\
& =\text { Tk. } 926
\end{aligned}
$$

* PVIF=Present Value Interest Factor

Present value of \$1 at end period (partial)											
Period	1\%	1.50\%	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%
1	0.9901	0.9852	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091
2	0.9803	0.9707	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.8573	0.8417	0.8264
3	0.9706	0.9563	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513
4	0.9610	0.9422	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7084	0.6830
5	0.9515	0.9283	0.9057	0.8626	0.8219	0.7835	0.7473	0.7130	0.6806	0.6499	0.6209
6	0.9420	0.9145	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645
7	0.9327	0.9010	0.8706	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132
8	0.9235	0.8877	0.8535	0.7894	0.7307	0.6768	0.6274	0.5820	0.5403	0.5019	0.4665
9	0.9143	0.8746	0.8368	0.7664	0.7026	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241
10	0.9053	0.8617	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855
11	0.8963	0.8489	0.8043	0.7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.3505
12	0.8874	0.8364	0.7885	0.7014	0.6246	0.5568	0.4970	0.4440	0.3971	0.3555	0.3186
13	0.8787	0.8240	0.7730	0.6810	0.6006	0.5303	0.4688	0.4150	0.3677	0.3262	0.2897
14	0.8700	0.8119	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.2633
15	0.8613	0.7999	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394

Understanding the Basics

Time Value of Money: Key Concepts

Annuity: An annuity is a series of equal receipts or payments occurring over a specified number of periods.
Types of Annuity: Annuity can be of two types based on the timing of cash flows. These are:

- Ordinary annuity: Payments or receipts occur at the end of each period.
- Annuity due: Payments or receipts occur at the beginning of the period

Future Value of Annuity (Ordinary): Many of us have MSS (DPS) account in banks, which is required to pay a certain amount of money at the end of/at the beginning of each certain period. Bank gives us interest/profit on deposited money. You might ask the bank about the total amount of money that you will receive after a certain period while you deposit a certain amount (Say Tk.5000) at the end of each year for next 5 years.

Future Value of an Ordinary Annuity

Understanding the Basics

Time Value of Money: Key Concepts

Future Value of Annuity:

$$
\begin{equation*}
\mathrm{FVA}_{\mathrm{n}}=\operatorname{PMT}\left(\left[(1+\mathrm{i})^{n}-1\right] / i\right) . \tag{3}
\end{equation*}
$$

Where,
$\mathrm{FVA}_{\mathrm{n}}=$ Future value of annuity after n period
PMT = Periodic payments.
i = Interest/profit rate
$\mathbf{n}=$ Number of years.
Thus,

$$
\begin{aligned}
\mathrm{FVA}_{5} & =\text { PMT }\left(\left[(1+\mathrm{i})^{\mathrm{n}}-1\right]\right. \\
& =5000\left(\left[(1+0.10)^{5}-1\right] / 0.10\right) \\
& =5000(6.1052) \\
& =\text { Tk. } 30,526
\end{aligned}
$$

Alternatively FVA $_{\mathrm{n}}=$ PMT (FVIFA $_{\mathrm{i}, \mathrm{n}}$)

$$
\begin{aligned}
\text { FVA }_{n} & =5000\left(\text { FVIFA }_{10 \%, 5 \text { years }}\right) \\
& =5000(6.105) \\
& =\text { Tk. } 30,525
\end{aligned}
$$

If Annuity due (payment made at the beginning of period):

$$
\begin{equation*}
\mathrm{FVAD}_{\mathrm{n}}=\text { PMT }\left(\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] / \mathrm{i}\right)(1+\mathrm{i}) . \tag{4}
\end{equation*}
$$

$$
\text { Or, } \text { FVAD }_{n}=\operatorname{PMT}_{\left(\text {FVIFA }_{i, n}\right)(1+i)}
$$

Future Value of an Ordinary Annuity Table

$$
\text { Factor }=\frac{\left[(1+i)^{n}-1\right]}{i}
$$

$\begin{aligned} & \text { S } \\ & \text { O } \\ & \text { O} \\ & \hline 0 \end{aligned}$	Rate (i)							
		1\%	2\%	3\%	5\%	8\%	10\%	12\%
	1	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	2	2.010	2.020	2.030	2.050	2.080	2.100	2.120
	3	3.030	3.060	3.091	3.153	3.246	3.310	3.374
	4	4.060	4.122	4.184	4.310	4.506	4.641	4.779
	5	5.101	5.204	5.309	5.526	5.867	6.105	6.353
	6	6.152	6.308	6.468	6.802	7.336	7.716	8.115
	7	7.214	7.434	7.662	8.142	8.923	9.487	10.089
	8	8.286	8.583	8.892	9.549	10.637	11.436	12.300
	9	9.369	9.755	10.159	11.027	12.488	13.579	14.776
	10	10.462	10.950	11.464	12.578	14.487	15.937	17.549
	11	11.567	12.169	12.808	14.207	16.645	18.531	20.655
	12	12.683	13.412	14.192	15.917	18.977	21.384	24.133
	13	13.809	14.680	15.618	17.713	21.495	24.523	28.029
	14	14.947	15.974	17.086	19.599	24.215	27.975	32.393
	15	16.097	17.293	18.599	21.579	27.152	31.772	37.280

Understanding the Basics

Time value of Money

Time Value of Money: Key Concepts

Present Value of Annuity: The present value of an annuity is the cash value of all of your future equal payments/receipts. The rate of return or discount rate is part of the calculation. An annuity's future payments are reduced based on the discount rate. Thus, the higher the discount rate, the lower the present value of the annuity is.

Present Value of an Ordinary Annuity

Understanding the Basics

Time Value of Money: Key Concepts

Present Value of Ordinary Annuity: PVA $_{n}=$ PMT $\left[\left(1-\left[1 /(1+i)^{n}\right] / i\right]\right.$.
Where, PVA= Present Value of Annuity (Ordinary) $P V A_{n}=5000\left[\left(1-\left[1 /(1+0.10)^{5}\right] / 0.10\right]\right.$
Or, $\mathrm{PVA}_{\mathrm{n}}=5000$ (3.7908)

$$
=\text { Tk. 18,954 }
$$

Alternatively, PVA $_{\mathrm{n}}=$ PMT (PVIFA $_{\mathrm{i}, \mathrm{n}}$)
Or, $\mathrm{PVA}_{\mathrm{n}}=5000$ ($\mathrm{PVIFA}{ }_{10 \%, 5 \text { years }}$)

$$
\begin{aligned}
& =5000(3.791) \\
& =\text { TK. } 18,955
\end{aligned}
$$

If Annuity due (payment made at the beginning of period):
${ }^{*}$ PVAD $_{n}=$ PMT $\left[\left(1-\left[1 /(1+i)^{n}\right] / i\right](1+i)\right.$.
Or, PVADn=PMT (PVIFA ${ }_{i, n}$) (1+i)
*PVAD=Present Value of Annuity Due

Time Value

Present Value of an Ordinary Annuity Table							
	Rate (i)						
		1\%	2\%	3\%	5\%	8\%	10\%
	1	0.990	0.980	0.971	0.952	0.926	0.909
	2	1.970	1.942	1.913	1.859	1.783	1.736
E	3	2.941	2.884	2.829	2.723	2.577	2.487
8	4	3.902	3.808	3.717	3.546	3.312	3.170
-	5	4.853	4.713	4.580	4.329	3.993	3.791
	6	5.795	5.601	5.417	5.076	4.623	4.355
	7	6.728	6.472	6.230	5.786	5.206	4.868
	8	7.652	7.325	7.020	6.463	5.747	5.335
	9	8.566	8.162	7.786	7.108	6.247	5.759

Understanding the Basics

Time Value of Money: Key Concepts

Problems of Mixed Flow:

Many time value of money problems that we face involve neither a single cash flow nor a single annuity. Instead, we may encounter a mixed or uneven pattern of cash flows.

Future value of mixed flows:

Example: Suppose you have decided to deposit the following cash (given in the table below) in a commercial bank at 10% annual interest/Profit rate. What will be the future value after five years of your deposited money?

Beginning of the year	Deposit (Tk.)
1	1000
2	2000
3	3000
4	4000
5	5000

$F V_{n}=P V_{0}(1+i)^{n}$

Calculation of Future Value of Mixed Cash Flows:

Future value after five years $\left(\mathrm{FV}_{5}\right)$ of $\mathrm{Tk} .1000\left(1^{\text {st }}\right.$ year) $=1000(1+.10)^{5}=\mathrm{Tk} .1,610.51$ Future value after five years $\left(\mathrm{FV}_{5}\right)$ of Tk. $2000\left(\mathbf{2}^{\text {nd }}\right.$ year) $\mathbf{2 0 0 0 (1 + . 1 0)}{ }^{4}=\mathbf{T k}$ 2,928.20 Future value after five years $\left(\mathrm{FV}_{5}\right)$ of $\mathrm{Tk} 3000\left({ }^{\text {rd }}\right.$ year) $)=3000(1+.10)^{3}=\mathrm{Tk} .3,993.00$ Future value after five years $\left(\mathrm{FV}_{5}\right)$ of $\mathrm{Tk} .4000\left(4^{\text {th }}\right.$ year $)=4000(1+.10)^{2}=\mathrm{Tk} .4,840.00$ Future value after five years $\left(\mathrm{FV}_{5}\right)$ of Tk. $5000\left(5^{\text {th }}\right.$ year) $=5000(1+.10)^{1}=T k .5,500.00$ Future value after five years (FV_{5}) of all deposited money $=$ Tk.18,871.71

Understanding the Basics

Time Value of Money: Key Concepts

Time Value

 of Money\rightarrow Nes

Present Value of Mixed Flows: Present value of mixed cash flows help in determining the investment decision.
Example: Suppose you have an investment opportunity of investing Tk. 50,000 now. The investment will generate the following cash inflows. If the discount rate is 8% will it be wise to invest in the project?

End of the year	Cash Inflow (Tk.)
1	15,000
2	20,000
3	15,000
4	15,000
5	10,000

$$
P V_{0}=F V_{n /}(1+i)^{n}
$$

Decision: Since NPV is positive, the project is accepted

Understanding the Basics

Time Value of Money: Key Concepts

$\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0}(1+[\mathrm{i} / \mathrm{m}])^{\mathrm{mn}}$.
Where, $m=$ Number of compounding in year
The future value after 3 years of Tk. 100 @ 8\% Interest Rate under quarterly compounding-

$$
\begin{aligned}
\mathrm{FV}_{3} & =100(1+[.08 / 4])^{(4)(3)} \\
& =100(1+.02)^{12} \\
& =\text { Tk. } 126.82
\end{aligned}
$$

The future value after 3 years of Tk. 100 @ 8\% Interest Rate under semiannual compounding-

$$
\begin{aligned}
\mathrm{FV}_{3} & =100(1+[.08 / 2])^{(2)(3)} \\
& =100(1+.04)^{6} \\
& =\text { Tk. } 126.53
\end{aligned}
$$

The future value after 3 years of Tk. 100 @ 8\% Interest Rate under annual compounding-

$$
\begin{aligned}
\mathrm{FV}_{3} & =100(1+[.08 / 1])^{(1)(3)} \\
& =100(1+.08)^{3} \\
& =\text { Tk. } 125.97
\end{aligned}
$$

The more the number of compounding in a year, the more the future value

Understanding the Basics

Time Value of Money: Key Concepts

Effective Annual Interest Rate:

Effective interest rate is the actual rate of interest earned (paid) after adjusting the nominal rate for factors such as the number of compounding periods per year.
Effective Annual Interest Rate $=(1+[i / m]){ }^{m}-1$ (8)

Problem: A savings plan offered a nominal interest rate of 8%. What will be the effective interest rate if the interest is compounded: a) Yearly; b)Semiannually; c)Quarterly \& d)Monthly.

Solution: Effective Annual Interest Rate $=(1+[i / m])^{m}-1$

$$
\begin{aligned}
& \text { a) } \text { EAIR }_{\text {(yearly) }}=(1+[.08 / 1])^{1}-1 \\
& =.08=8 \% \\
& \text { b) } \operatorname{EAIR}_{\text {(Semiannualy) }}=(1+[.08 / 2])^{2-1} \\
& =.0816=8.16 \% \\
& \text { c) } \text { EAIR }_{\text {(Quarterly) }}=(1+[.08 / 4])^{4-1} \\
& =.0824=8.24 \% \\
& \text { d) } \operatorname{EAIR}_{\text {(Monthly) }}=(1+[.08 / 12])^{12-1} \\
& =.0829=8.29 \%
\end{aligned}
$$

Understanding the Basics

Capital Budgeting Techniques

Capital budgeting techniques are the methods to evaluate an investment proposal in order to help the company decide upon the desirability of such a proposal. These techniques are categorized into two heads: traditional methods and discounted cash flow methods.

Techniques of capital budgeting

Understanding the Basics

Capital Budgeting Techniques: Traditional

1. Payback Period: The payback period (PBP) of an investment project tells us the number of years required to recover our initial cash investment based on the project's expected cash flows.

Payback Period (PBP): 3 Years+ (200,000-185,000)/40,000 = (3+0.375) Years= 3.375 Years

Decision Criteria:

If the calculated PBP<Acceptable PBP----Accept the Project
If the calculated PBP>Acceptable PBP---- Reject the Project

Understanding the Basics

Capital Budgeting Techniques: Traditional

2. Accounting Rate of Return:

Accounting rate of return (ARR) is a formula that reflects the percentage rate of return expected on an investment, or asset, compared to the initial investment's cost.

Particulars	Amount in Tk.
Initial Investment	100,000
Profit Net Income Y1	10,000
Profit Net Income Y2	20,000
Profit Net Income Y3	25,000
Profit Net Income Y4	30,000
Profit Net Income Y5	35,000
Average Net Income	24,000
ARR (Average Net Income/Initial	
Investment)	$\mathbf{2 4 \%}$

Decision Criteria:

If the calculated ARR>Acceptable ARR---- Accept the Project
If the calculated ARR<Acceptable ARR---- Reject the Project

Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique

1. Net Present Value:

NPV is used in capital budgeting and investment planning to analyze the profitability of a projected investment or project. Net present value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows over a period of time. Calculate the NPV of the following problem @ 12% discount rate

Particulars	Initial Year	Year 1	Year 2	Year 3	Year 4
Cash Outflow	$(100,000)$	-	-		-
Cash Inflow		$-34,432$	39,530	39,359	32,219

$$
\mathrm{NPV}=\frac{T k \cdot 34,432}{(1+.12)^{1}}+\frac{T k \cdot 39,530}{(1+.12)^{2}}+\frac{T k \cdot 39,359}{(1+.12)^{3}}+\frac{T k \cdot 32,219}{(1+.12)^{4}}-T k \cdot 100,000
$$

Or, alternatively,
NPV $=\left[\right.$ Tk. $34,432\left(\right.$ PVIF $\left._{12 \%, 1,1}\right)+$ Tk. $39,530\left(\right.$ PVIF $\left._{12 \%, 2}\right)+$ Tk. $39,359\left(\right.$ PVIF $\left._{12 \%} \%_{3}\right)+$ Tk.Tk. $32,219\left(\right.$ PVIF $\left._{12 \% \%_{4}}\right)$]Tk. 100,000
$=[$ Tk. $30,748+$ Tk. $31,505+$ Tk. $28,024+$ Tk. 20,491$]-T k \cdot 100,000$
$=T k .10,768$.

Decision Criteria:
If NPV>0 --- Accept the Project
If NPV <0 --- Reject the Project

Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique

2. Internal Rate of Return:

The internal rate of return (IRR) for an investment proposal is the discount rate that equates the present value of the expected net cash flows (CFs) with the initial cash outflow (ICO).
That is, IRR is the rate at which Present Value of Cash Inflows=Initial Investment/Present Value of Cash Outflow.

$$
\mathrm{ICO}=\frac{C F_{1}}{(1+I R R)^{1}}+\frac{C F_{2}}{(1+I R R)^{2}}+\ldots \ldots+\frac{C F_{n}}{(1+I R R)^{n}}
$$

Decision Criteria:

If IRR> Discount Rate---- Accept the Project If IRR< Discount Rate----- Reject the Project If IRR= Discount Rate----- NPV=0

Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique
Calculation of IRR:

Particulars	Initial Year	Year 1	Year 2	Year 3	Year 4
Cash Outflow	$(100,000)$				
Cash Inflow		$-34,432$	39,530	39,359	32,219

year	NET CASH FLOWS		FVIF AT 15\%		PRESENT VALUES
1	34,432	x	. 870	$=$	29,955.84
2	39,530	\times	. 756	$=$	29,884,68
3	39,359	\times	. 658	$=$	25,898.22
4	32,219	\times	. 572	$=$	18,429.27
Present Value of Cash Inflow					104,168.01
NPV@ 15\% Discount Rate					4,168.01

YEAR	NET CASH FLOWS		PVIF AT 20\%		PRESENT VALUES		
1	34,432	x	.833	$=$	$28,681.86$		
2	39,530	x	.694	$=$	$27,433.82$		
3	39,359	x	.579	$=$	$22,788.86$		
4	32,219	x	.482	$=$	$15,529.56$		
Present Value of Cash Inflow					$94,434.10$		
NPV @20\% Discount Rate							$-5,565.90$

$$
\begin{aligned}
\text { IRR } & =0.15+4,168.01 /[(4,168.01-(-5,565.90)] *(0.20-0.15) \\
& =0.15+(4,168.01 / 9,733.91)^{*} 0.05 \\
& =0.15+0.0214=0.1714=17.14 \%
\end{aligned}
$$

Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique

3. Profitability Index

The profitability index (PI), or benefit-cost ratio, of a project is the ratio of the present value of future net cash flows to the initial cash outflow. It can be expressed as:

$$
\mathrm{PI}=\left[\frac{C F_{1}}{(1+K)^{1}}+\frac{C F_{2}}{(1+K)^{2}}+\ldots \ldots+\frac{C F_{n}}{(1+k)^{n}}\right] \div I C O
$$

$$
\begin{aligned}
\mathrm{PI} & =(30,748+31,505+28,024+20,491) \div 100,000 \\
& =110,768 \div 100,000 \\
& =1.11
\end{aligned}
$$

Thus, the Project is acceptable.


```
Decision Criteria:
If Pl> 1---- Accept the Project
If Pl< 1----- Reject the Project
If Pl= 1----- NPV=0
```


Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique

Capital Rationing:

$>$ Capital rationing is a strategy used by companies or investors to limit the number of projects they take on at a time. If there is a pool of available investments that are all expected to be profitable, capital rationing helps the investor or business owner choose the most profitable ones to pursue.
$>$ With a capital rationing constraint, the firm attempts to select the combination of investment proposals that will provide the greatest increase in the value of the firm subject to not exceeding the budget ceiling constraint.

PROJECT	INITIAL CASH OUTFLOWS (TK.)	IRR (\%)	NPV(Tk.)	PI
A	50,000	15	12,000	1.24
B	35,000	19	15,000	1.43
C	30,000	28	42,000	2.40
D	25,000	26	1,000	1.04
E	15,000	20	10,000	1.67
F	10,000	37	11,000	2.10
G	10,000	25	13,000	2.30
H	1,000	18	100	1.10

Requirements:

Which Projects would you choose if you have budget constraint of Tk.65,000?
Definitely you should choose the projects that will generate higher NPV. In order to solve the problem you have to go by PI
Projects C (PI-2.40), G(PI-2.30), F (PI-2.10) and E (PI-1.67) will have NPV of Tk.76,000 which is the highest in all combination of investment of Tk.65,000 of budget ceiling

Understanding the Basics

Capital Budgeting Techniques: Discounted Cash Flow Technique

Selected	NPV		Selected				Selected			
Project	NPV	Fund	Project	IRR	Fund	NPV	Project	PI	Fund	NPV
C	42,000	30,000	F	37\%	10,000	11,000	C	2.4	30,000	42,000
B	15,000	35,000	C	28\%	30,000	42,000	G	2.3	10,000	13,000
	57,000	65,000	D	26\%	25,000	1,000	F	2.1	10,000	11,000
					65,000	54,000	E	1.67	15,000	10,000
									65,000	76,0

PROJEC T	INITIALCASH OUTFLOWS (TK.)	IRR (\%)	NPV(Tk.)	PI
A	50,000	15	12,000	1.24
B	35,000	19	15,000	1.43
C	30,000	28	42,000	2.40
D	25,000	26	1,000	1.04
E	15,000	20	10,000	1.67
F	10,000	37	11,000	2.10
G	10,000	25	13,000	2.30
H	1,000	18	100	1.10

Understanding the Basics

Financing Mix

Table 8.1 Classification of Sources of Funds

Understanding the Basics

Lease Financing

What is Lease Financing?
Lease financing is one of the important sources of medium- and long-term financing where the owner of an asset gives another person, the right to use that asset against periodical payments. The owner of the asset is known as lessor and the user is called lessee.

Types of Lease: Depending upon the transfer of risk and rewards to the lessee, the period of lease and the number of parties to the transaction, lease financing can be classified into two categories. Finance lease and operating lease.

Finance Lease: It is the lease where the lessor transfers substantially all the risks and rewards of ownership of assets to the lessee for lease rentals. In other words, it puts the lessee in the same condition as he/she would have been if he/she had purchased the asset.

Operating Lease: Lease other than finance lease is called operating lease. Here risks and rewards incidental to the ownership of asset are not transferred by the lessor to the lessee. The term of such lease is much less than the economic life of the asset and thus the total investment of the lessor is not recovered through lease rental

Understanding the Basics

Cost of Capital

What is Cost of Capital?

In economics and accounting, the cost of capital is the cost of a company's funds (both debt and equity), or, from an investor's point of view it is the required rate of return on a portfolio company's existing securities. It is used to evaluate new projects of a company. It is the minimum return that investors expect for providing capital to the company, thus setting a benchmark that a new project has to meet.

What is Weighted Average Cost of Capital?

The weighted average cost of capital (WACC) is a calculation of a firm's cost of capital in which each category of capital is proportionately weighted. All sources of capital, including common stock, preferred stock, bonds, and any other long-term debt, are included in a WACC calculation.

The Cost of Equity Capital

The Cost of Equity Capital: Capital Assets Pricing Model

- From the firm's perspective, the expected return is the Cost of Equity Capital:

$$
\bar{R}_{s}=R_{F}+\beta\left(\bar{R}_{M}-R_{F}\right)
$$

- To estimate a firm' s cost of equity capital, we need to know three things:

1. The risk-free rate, R_{F}
2. The market risk
3. The company beta (Sensitivity of a stock' s return to the return on the market portfolio.

Determinants of Beta

- Business Risk

1. Cyclicality of Revenues

2. Operating Leverage (the degree of operating leverage measures how sensitive a firm (or project) is to its fixed costs.

- Financial Risk

3. Financial Leverage (Financial leverage is the sensitivity to a firm's fixed costs of financing)

Using the Security Market Line(SML)

An all-equity firm should accept projects whose IRRs exceed the cost of equity capital and reject projects whose IRRs fall short of the cost of capital.

Capital Budgeting \& Project Risk

10% reflects the opportunity cost of capital on an investment in electrical generation, given the unique risk of the project.

The Cost of Equity Capital: Dividend Discount Model (DDM)

$$
R_{s}=\frac{D_{1}}{P}+g
$$

- Where D1=Dividend of the next years, $\mathrm{P}=$ Market Price; $\mathrm{g}=$ Growth Rate
- The DDM is an alternative to the CAPM for calculating a firm's cost of equity.
- The DDM and CAPM are internally consistent, but academics generally favor the CAPM and companies seem to use the CAPM more consistently.
- The CAPM explicitly adjusts for risk and it can be used on companies that do not pay dividends.

Cost of Debt

- The cost of debt is the effective rate that a company pays on its debt, such as bonds and loans.
- The after-tax cost of debt is the interest paid on debt less any income tax savings due to deductible interest expenses.

Cost of Preferred Stock

- Preferred stock is a highbred security which carries both the feature of bond and equity
- Preferred stock is a perpetuity, so its price is equal to the coupon paid divided by the current required return.

Identification of Problem is the Half of Solution

Problems \& Solutions

1) $A B C$ Company is considering a proposal to purchase a machine costing Tk. 10,00,000 initially. The machine is expected to have economic life of 5(five) years with salvage value of Tk.100,000. The expected profit before depreciation and tax is shown in the following table. The company follows straight line depreciation method. Assume tax rate is 50% and also assume cost of capital is 15%.

End of the year	Amount of cash flow (in Tk.)	Present Value Interest Factor(PVIF) @15\% Discount Rate
1	250,000	0.870
2	300,000	0.756
3	350,000	0.658
4	250,000	0.572
5	200,000	0.497

Requirements:

1) Will it be wise to purchase the machine? Give your decision based on NPV method.
2) Calculate the Payback Period of the machine

1)

End of the year (1)Cash Flow Before Tax and Depreciation (2)
1

```
2. Payback Period = 4 Years +(10,00,000-935,000)/290,000
    =4.22 Years
```


Problems \& Solutions

2) RB Fashion has the following capital structure on December 31, 2020

Source of Capital:	Amount (Tk.)
Ordinary Share Capital (800,000 Shares)	$8,000,000$
10% Preference Share	$2,000,000$
14% Debenture	$6,000,000$
Total	$16,000,000$

The share of the company sells for Tk.20. It is expected that company will pay next year a dividend of Tk. 2 per share which will grow @5\% forever. Assume 40\% tax rate.

Requirements:
i) Compute weighted average cost of capital (WACC) based on existing capital structure
ii) Compute the new weighted average cost of capital (WACC) if the company raises an additional Tk. 40,00,000 debt by issuing 15% subordinated bond. This would result to increase in expected dividend to Tk. 3 per share with same growth rate.

Ordinary Share	$8,000,000$
10% Preference Share	$2,000,000$
14% Debenture	$6,000,000$
Current Market Price	20
Growth Rate	0.05
Dividend of Next Year (D1)	2

Cost of Common Stock	Ke=(D1/Current Market Price) $+G=(2 / 20)+0.05$	$=0.15=15 \%$
Cost of Preferred Stock @10\%	Dps=Rate of Preferred Dividend	$=0.10=10 \%$
Cost of Debenture @14\%	De=Dc(1-Tax Rate)=0.14*(1-0.40)	$=0.084=8.40 \%$

i) Weighted Average Cost of Capital

Particulars (1)	Amount(2)	Weightage(3)	Cost(4)	Weighted Cost (5=3*4)
Ordinary Share	$8,000,000$	0.500	0.150	0.0750
10\% Preference Share	$2,000,000$	0.125	0.100	0.0125
14% Debenture	$6,000,000$	0.375	0.084	0.0315
Total	$16,000,000$	1.000	WACC	$\mathbf{0 . 1 1 9 0 = 1 1 . 9 0 \%}$

$\mathrm{D} 1=\mathrm{D} 0(1+\mathrm{G})=2.1$ [If D1 is not given]
(where D0=Dividend of Current year

Ordinary Share	$8,000,000$
10% Preference Share	$2,000,000$
14% Debenture	$6,000,000$
15% Subordinated Bond	$4,000,000$
Current Market Price	20
Growth Rate	0.05
Dividend/Share of Next Year (D1)	3

Revised Cost of Common Stock	Ke=(D1/Current Market Price) $+\mathrm{G}=(3 / 20)+0.05$	$=0.20=20 \%$
Cost of Subordinated Bond	$\mathrm{Ds}=\mathrm{DSc}(1-\operatorname{Tax}$ Rate $)=0.15^{*}(1-0.40)$	$=0.09=9 \%$

ii) Weighted Average Cost of Capital

Particulars (1)	Amount(2)	Weightage (3)	Cost (4)	Weighted Cost(5=3*4)
Ordinary Share	$8,000,000$	0.40	0.200	0.08
10% Preference Share	$2,000,000$	0.10	0.100	0.01
14% Debenture (from previous)	$6,000,000$	0.30	0.084	0.0252
15% Subordinated Bond	$4,000,000$	0.20	0.090	0.018
Total	$20,000,000$	1.00	WACC	13.32%

Problems \& Solutions

3) Mr. X wishes to purchase an annuity contract that will pay him Tk. 7,000 a year for the rest of his life. The Delta Life Insurance Company figures that his life expectancy is 9 years, based on actuary tables. The company imputes a compound annual profit rate of 10% in its annuity contract.

Requirements:

i) How much will he have to pay for the annuity?
ii) How much would he have to pay if the profit rate were 8% ?

We are Given,

Payment (PMT)	Tk. 7000
Interest Rate (i)	i) 10% and ii) 8%
Number of Years (n)	9 Years
How much Mr. X Will have to Pay Now?	i.e., Present Value of Annuity (PVA)

We Know, PVA $_{\mathrm{n}}=$ PMT $\left[\left(1-\left[1 /(1+\mathrm{i})^{\mathrm{n}}\right] / \mathrm{i}\right]\right.$ Or, PVA $_{n}=$ PMT $\left(\right.$ PVIFA $\left._{i, n}\right)$
i) PVA $_{9}=7,000\left(\right.$ PVIFA $\left._{10 \%, 9}\right)$
=7,000 *5.759

$$
=40,313
$$

ii) PVA $_{9}=7,000$ (PVIFA $_{8 \%, 9}$)

$$
\begin{aligned}
& =7,000 * 6.247 \\
& =43,729
\end{aligned}
$$

Present Value of an Ordinary Annuity Table							
	Rate (i)						
		1\%	2\%	3\%	5\%	8\%	10\%
	1	0.990	0.980	0.971	0.952	0.926	0.909
	2	1.970	1.942	1.913	1.859	1.783	1.736
E	3	2.941	2.884	2.829	2.723	2.577	2.487
8	4	3.902	3.808	3.717	3.546	3.312	3.170
$\stackrel{\circ}{0}$	5	4.853	4.713	4.580	4.329	3.993	3.791
	6	5.795	5.601	5.417	5.076	4.623	4.355
	7	6.728	6.472	6.230	5.886	5.206	4.868
	8	7.652	7.325	7.020	6.463	5.747	5.335
	9	8.566	8.162	7.786	7.108	6.247	5.759

Problems \& Solutions

4) You have currently Tk. 100,000 to deposit in an Islamic Bank under Mudaraba Term Deposit (MTDR) on Auto Renewal basis. You have been informed that the provisional rate of profit for 3 months MTDR is 7% followed by 7.50% for 6 months and 7.75% for 12 months.

Requirements:
i) What would you get at the end of three years on each alternative?
ii) What would be the effective rate of return on each alternative and which plan should you choose?

4) (i)

We are Given,

Principal Amount	Tk. 100,000
Profit Rate Rate (i)	1) 7% for 3 months MTDR
	2) 7.5% for 6 months MTDR
	3) 7.75% for 1 year MTDR
Number of Years (n)	3 Years
i) How much you will get after 3 three years for each alternative?	Future value after 3 years for all the three alternatives
ii) What will be the Effective Annual Interest Rate	Calculate the Effective Annual Interest Rate (EAIR) (EAIR) for each alternative and which one will you for each alternative and the best alternative will be choose?

We Know, $\quad \mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0}(1+[\mathrm{i} / \mathrm{m}])^{\mathrm{mn}}$
[If number of compounding is more than once in a year]
1)

$$
\begin{array}{rlr}
\mathrm{FV}_{3 \text { (Three Months MTDR) }}=\mathrm{PV}_{0}(1+[\mathrm{i} / \mathrm{m}])^{\mathrm{mn}} \\
& =100,000(1+[0.07 / 4])^{4^{* 3}} & \text { where, } \mathrm{i}=\mathbf{7 \%}, \mathrm{m}=4 \\
& =123,143.93
\end{array}
$$

2)

$$
\begin{aligned}
&\left.\mathrm{FV}_{3(\text { Six Months MTDR) }}=\mathrm{PV}_{0}(1+[\mathrm{i} / \mathrm{m}])\right)^{\mathrm{mn}} \\
&=100,000(1+[0.075 / 2]))^{2 * 3} \\
&=124,717.85
\end{aligned}
$$

where, $\mathrm{i}=7.50 \%, \mathrm{~m}=2$
3)

$$
\begin{aligned}
& \mathrm{FV}_{3(1 \text { Year MTDR) }}=\mathrm{PV} \\
& 0
\end{aligned} \quad \begin{aligned}
(1+[\mathrm{i} / \mathrm{m}]) & \mathrm{mn} \\
& =100,000(1+[0.0775 / 1]){ }^{1 * 3} \\
& =125,098.42
\end{aligned}
$$

4) (ii)

We are Given,

Principal Amount	Tk. 100,000
Profit Rate Rate (i)	1) 7% for 3 months MTDR
	2) 7.5% for 6 months MTDR
	3) 7.75% for 1 year MTDR
Number of Years (n)	3 Years
i) How much you will get after 3 three years for each alternative?	Future value after 3 years for all the three alternatives
ii) What will be the Effective Rate of Return (ERR) for	Calculate the Effective Rate of Return (ERR) for each alternative and the best alternative will be where each alternative and which one will you choose?

Effective Annual Interest Rate $=(1+[i / m])^{m}-1$

Effective Annual Interest Rate $=(1+[\mathrm{i} / \mathrm{m}])^{\mathrm{m}} \mathbf{- 1}$	
1)	EAIR (quarterly) $=(1+[i / m])^{\mathrm{m}-1}$
	$\begin{aligned} & =(1+[0.07 / 4])^{4-1} \\ & =7.19 \% \end{aligned}$
2)	EAIR (Semi Annually) $=(1+[i / m])^{\text {m-1 }}$
	$=(1+[0.075 / 2])^{2-1}$
	=7.64\%
	$\text { 3) } \quad \begin{aligned} \text { EAIR }(\text { Yearly })=(1+[\mathrm{i} / \mathrm{m}])^{\mathrm{m}-1} & \\ & =(1+[0.0775 / 1])^{1-1} \\ & =7.75 \% \end{aligned}$

DIPLOMA IN ISLAMIC BANKING
management accounting \& Financial mat.
SOLUTION: EXAM -MAY- 2023

1) (b)

$$
\text { Contribution Margin }(C M)=\text { Sales -Variable cost }
$$

Alif 낭.

Contribution Margin (CM)

$$
\begin{aligned}
& \pi k \cdot(150,000-120,000) \\
& =30,000 \mathrm{Tk} .
\end{aligned}
$$

Contribution Marin Raitiofcerlorio) $=30,000 / 150,000$

$$
\begin{aligned}
=(\text { Contribution Margin/Sales) } & =0 \cdot 20 \\
\text { (i) Break-eren Point of Sales }= & =15,000 / 0 \cdot 20 \\
\text { (Fixed Cost/cM Ratio) } & =\pi \cdot 75000 \\
\text { Margin of safety= (Sales-BE Sale) } & =(150,000-75,000) \\
& =\pi \cdot 75,000
\end{aligned}
$$

mim Lid.

$$
\begin{aligned}
& T_{k}(150,000-100,000) \\
& =50,000 \mathrm{~K} . \\
& =50,000 / 150,000 \\
& =0.3333 \\
& =350,00 / 0.3333 \\
& =T k \cdot 105,010
\end{aligned}
$$

$$
=150,000-105,010
$$

$$
=\pi k .44990
$$

(ii) Volume of Revenue to earn prosit of $7 k \cdot 50,000=$ (Fixed cost + Desidee Falsity CM Ratio
Mim LHD.

$$
\begin{aligned}
& =(35,000+50,000) / 0 \cdot 3333 \\
& =\pi \cdot 255,025
\end{aligned}
$$

$\frac{\text { Ali LId. }}{(15,000+50,000) / 0 \cdot 20}$

$$
=\pi k 325,000
$$

Volume of revenue to earn profit $=(15,000+50,000)$ (0.20 of Tk.50,000

$$
=\pi \quad=\pi \times \pi
$$

(iii) Considering contribution margin and fixed cost unchanged, Mim Lid. will likely to earn greater profit in conditions of teary demand as its contribution margin is higher compared with Ali It. In cere of heavy demand, fixed cost remained unchanged, Mim 4 will cons the fixed cost quickly compared with Alt) td. and well generate highesprict. On the contrary, all other things remained unchanged, Alt Hid. will lely to earn greater profit in the condition of lur demand as Ali It . has low fixed cost compared to Mim Ltd. As such Ali Ltd. will likely to. cover the fixed cost earliar compared with Mim Ltd and will likely t generate greater profit.

Pages
$2(b)$
Safe Manufacturing
Statement of cash fond (Indirect Meltind)
For the Year Ended 31 Decent 2022

$$
T_{k} .
$$

A. Cashflow from Operating Activities:
Net income $\quad 450,000$

Add: Depreciation 125,000
Add: Decrease in Receirable ($350,000-281,20$) 68,750
Les: Increase in Inventory ($150,000-125,000)(25,000)$
Less: Decrease in Payable ($300,000-237.500)(62.500)$
Less: Gain in Sale of Equipment (50,000)
Net Cash form Operating Activities - $\quad 506,250$
B. Corthure from Investing Activities:

Sale of Equipment
$(-)$ Purchase during the period

$$
\text { (} 218,750)
$$

Net coshform from Investing Actirition $(181,250)$
C. Coseffore from Financing Activities:

Issuance of Murt-goge
Dividend paid during the period
Net cosh for from financing activities
Ned $\cosh (A+B+C)$

250,000
$(225,000)$
25,000
350,000

Page-2

3(b) We are given,
Earning Before Interest and Tax (EB1D)
Less: Interest on 16% Bond (16% of $7 K \cdot 120,000$)
Th. 179,200

Earning Before Tan (EBT)
Less: Tan (a) 40% on EBT $(40 \%$ of 160,000$)$
Net Profit after tan \rightarrow
(i) Return on Equity (ROE) $=\frac{\text { Net poop after Taxa }}{\text { Shareholders Equity }}$
shouhilder Equity = Common Stock +

$$
\begin{aligned}
& \text { whirler Equity }=(\text { Common Stock t } \\
& \text { Shane Premium + Retained Amiss) }=\frac{96,000}{(420,000+240,000+180,000)} \\
& =(420,000+240,000+180,000) \\
& =840,000
\end{aligned}
$$

(ii) Time Interest Earned Ratio $=E B I T /$ interest Expenses

$$
=179,200 / 19,200=9.33 \text { times }
$$

(iii) Earning Per shave (EPS)

$$
\begin{aligned}
& =\text { Net profit After Tan } / \text { No of outstanding } \\
& \text { shares } \\
& =96,000 / 16,800=\text { Tk. } 5171 / \text { share }
\end{aligned}
$$

(IV) Price-Earning Ratio (PLE Ratio) = Mat Price Per share/Eamingsos sta de Market Pricelshare $=$ Th. 35

$$
=35 / 5.71=6.13 \text { times }
$$

(v)

$$
\begin{aligned}
\text { Book Value/share } & =\frac{\text { shareholders Equity }}{\text { No. of outstanding shares }} \\
& =\frac{840,000}{16,800} \\
& =T K .50 / \text { share }
\end{aligned}
$$

Page- 3

5(b) We are given,
cost of vehide $=T_{k} \cdot 45,00,000$
Client's Equity 30% of $\cos t=13,50,000$
HPSM investment TK. 31,50,000

No of $\mathrm{Year}(x)=7$
Rate of Returen $(i)=9 \%$ pr ammum inotallment yearly at the end of eachyars
we krow,

Thus Installment sige will be Tk. 625,869
(e) (i) We are given, Deposet Amount $=T_{k} \cdot 10,000$

$$
\begin{aligned}
& \text { re given. Deposit Amout }=T k \cdot 10,000 \\
& \text { Profigsional Rate of profet }(i)=6.50 \%(3 \text { marth, MorR) }, 6.75 /(6 \mathrm{monh} M I R
\end{aligned}
$$

$$
\text { Period }(x)=3 \text { years }
$$ and 6.85%. (12 morth MDR

$F V_{3}=$ Futene V alue afte 3 years Here $m=$ No of compounling

$$
\begin{aligned}
F V_{3}(3 \text { martm } 7+T D R) & =P V_{0}[1+(i / m)]^{m n} \\
& =10,000[1+.065 / 4]^{4 \times 3} \\
& =\mathbb{R} \cdot 12,134 . \\
F V_{3}(6 \text { mosth, MTDR }) & =P V_{0}[1+i / m]^{m n} \quad \mid \text { Here } m=2 \\
& =10,000[1+0.0675 / 2]^{2 \times 3} \\
& =T k .12,203
\end{aligned}
$$

$$
\begin{aligned}
& =T k \cdot 12,203 \\
\mathrm{FV}_{3}(12 \text { matt. } M T D R) & =10.000[1+0.0685 / 1]^{3 \times 1} \text { Here } m=1 \text { since yealy } \\
& =T k \cdot 12,99
\end{aligned}
$$

Now,

$$
=\text { in a year }=4
$$

(ii) Effective Annual Intarbat Rate (EA1R) $=[1+i / m]^{m}-1$

Now,

$$
\begin{aligned}
& \text { EAIR (3 moth, MTDR) }=[1+.065 / 4]^{4}-1=6.66 \% \\
& \text { EAIR (} 6 \text { month MTDR) }=[1+.0675 / 2]^{2}-1=6.86 \% \\
& \text { EAR (} 12 \text { montra MTDR) }=[1+.0685 / 1]^{1}-1=6.85 \%
\end{aligned}
$$

From the above calculation, we see that 6 morith MTDR'S EAIR is higher among all the alternatives thes we stured go for plan-2 i.e daposit in 6 months MTDR.

Page-4

$$
\begin{aligned}
& \text { PVA }=\text { PMT (PVIFA iy, } n \text { year) } \\
& \Rightarrow 31,50,000=\operatorname{PMT}\left(\text { PVIFA }_{9 \%}, 7 \text { yoñ }\right) \\
& \Rightarrow 31,50,000=\operatorname{PMTX} 510330 \quad \text { [From PVIFA Table] } \\
& \Rightarrow \text { PMT }=31,50,000 / 5.0330=\pi .625,869
\end{aligned}
$$

7 (b) We are given.
Cost of Machine $=$ TX. 500,000
Expected Life of Machine $=5$ years
Salvage (Svalue $=\pi$ th 50,000 , cost of capital $=15 \%$, Tax Rate $=50 \%$
Calculation of depreciation, of Machine/year = (Cost of Machive-Salraqe value)
No of yeas of nadine

$$
=\pi(500,000-50,000) / 5
$$

$$
=\pi k 90,000 / \text { year }
$$

(ii) Using the NPV mettird of capital budgeting technique as calculated above, we can soy that it will be wise to purchase the machine as it has positive NPV of TK. 22085.

$$
\begin{align*}
& \text { (i) Payback Period }=\text { Fullyears Until }+\frac{\text { Uncured cost at the being of recon id }}{\text { Cashflow during reciong peinde }} \\
& =3+\frac{(500,000-460,000)}{157,500} \text { years } \\
& =3+0.2539 \text { years }=3.25 \text { years or } 3 \text { yeans } 3 \text { nat } \tag{APP}
\end{align*}
$$

8(b) We are given.
Ordinary share $=T r \cdot 80,00,000$,
10% Preference share $=$ TK. 20.00.000
14% Debenture $=\pi k \cdot 60,00,000$
Share price $=T k \cdot 20 /$ share, Dividend of next year $(D)=T K \cdot 2 /$ share Grout h rate $=5 \%$, Tax Rate $=40 \%$

$$
\begin{aligned}
\text { Now, Cost of Common stock }(k)) & =\frac{D_{1}}{\text { Shore price }}+\text { Grout Rate } \left\lvert\, \begin{array}{l}
\text { Coridning } \\
\text { Divispurf } \\
\text { Mode }
\end{array}\right. \\
& =\frac{2}{20}+.05 \\
& =0.15 \text { or } 15 \%
\end{aligned}
$$

Cost of Preference Share $=10 \%=0.10$

$$
\begin{aligned}
\text { Cost of Preferusice Share } & =10 \%=0.10 \\
\text { cost of debit debenture }\left(B_{e}\right) & =D_{C}(1-\text { Tax hate }) \quad\left\{\begin{array}{l}
\text { Here } D C=\text { Original } \\
\text { cost of debenture }
\end{array}\right. \\
& =0.14(1-0.40)=0.084 \text { or } 8.40 \%
\end{aligned}
$$

(i) Weighted Average Cost of capital:

(ii) Cost of addition $\operatorname{Dept}\left(B_{s}\right)=0.15(1-.40)=0.09=9 \%$

$$
\begin{aligned}
\text { Revised Cost of Common stock (Ger) } & =\frac{D_{1}}{\text { shemePrice }}+G \\
& =\frac{3}{15}+.05 \\
& =0.25 \text { or } 25 \%
\end{aligned}
$$

Now, revised Freighted Average cost of Capital:

Page-6

ZIt＇ILS 002＇t \dagger 006＇2t			$\varepsilon \tau$
		（ $\tau \tau+8 \tau+5 \tau) 750\rceil$ ן 2×1	てて
		（0Z＋6T）sasuadx］8u！	Iz
	006＇乙T		Oz
	000＇0¢		6I
008＇ \mathcal{L}			81
	$008{ }^{\prime} \varepsilon \tau$		$\angle I$
	000＇09		91
000＇8โع		（tז－દโ＋zז）plos spoos fo	SI
000×08		（8）spoos pays！u！	¢
000＇0ヵโ		（88）spoos pzus！u！y	$\varepsilon \tau$
000＇85z			乙I
000＇09		（8）dim－	II
000＇0s		（8g） $\mathrm{dIM}+$	OT
$\overline{000} 892$			6
000＇0¢			8
000＇06		ınoqe7 pכәı！pu｜	\angle
000＇0t			9
			S
000＇8Eโ		$(\varepsilon+\tau+\tau) 7500$ วu！nd	万
$\overline{000} 0$		sassuadx］ฉวan！	ε
000＇82	$\left(0 z_{*} 00 \downarrow \tau\right)$		て
000＇0t		pasn ןe！uarew mey	τ
			fəy

2(b) We are given,

Particulars	Company A	Company B
Capacity Utilization	85%	80%
Sales	$T k \cdot 60,00,000$	$T k \cdot 50,00,000$
Variable cost	$T k \cdot 40,00,000$	$T k \cdot 35,00,000$
Fred cost	$T k \cdot 10,00,000$	$T_{k} \cdot 800,000$

(i)

$$
\begin{aligned}
& \text { Contribution Margin } \\
& \text { = Sales - Variable Cost } \\
& \text { Company } A \text { Company } B \\
& \begin{array}{l}
\text { 60,00,000-40,00000 } \\
=20,00,000 \pi \text { To. }
\end{array} \\
& \text { 50,00,000-35,00,000 } \\
& =20,00,000 \mathrm{Tk} \text {. } \\
& \text { Contribution Margin Ratio(ens) }=20,00,000 / 60,00,000 \\
& =33.33 \% \\
& \begin{aligned}
\text { BreakEven Soles (figs art/cui) }) & =10,00,000 / 33 \cdot 33 \% \\
& =30,00300 \mathrm{Tk} .
\end{aligned} \\
& =15,00,000 \mathrm{Tk} \text {. } \\
& =15,00,000 / 50,00,000 \\
& =30 \% \\
& =800,000 / 30 \% \\
& =26,66,666 \pi k .
\end{aligned}
$$

(ii) Merged soles $=(60,00,000+50,00,000)=110,00,000 \pi$.

Merged Variable Cost $=(40,00,000+35,00,000)=7 k \cdot 75,00,000$
Merged Fixed cost $=(10,00000+800,000)=7 k \cdot 18,00,000$
Merged Contribution Margin $=(110,00,000-75,00,000)=$ Mk. 35,00,000
Merged Contribution Margin Ratio $=35,00,000 / 110,00,000=31 \cdot 82 \%$
Break-Even Sales of Merged Plant $=18,00,000 / 31 \cdot 82 \%=56,56,820$
(iii) Sales © 90% capacity uthizasion

$$
\text { in } \begin{aligned}
& \frac{\text { Compary-At }}{} \quad \frac{\text { Company -B }}{0,00,000} \times 90 \\
= & \frac{50,00,000}{85,52,941} \times 90 \\
40,00,000 / 60,00,000=0.67 & = \\
& =36,25,000 \\
&
\end{aligned}
$$

\checkmark variable cost Ratio
$\begin{aligned} \text { Merged sales © } 90 \% \text { capacity utilization } & =(63,52,941+56,25,000) \\ & =11,977941\end{aligned}$
Variable cost (a) 90% capacity ufilizdinn $(63,52,941 \times \cdot 67) \quad(5625,000 \times 70)$

$$
=42,56,470 \mathrm{k} . \quad=39,37,500 \pi \mathrm{k}
$$

Merged variablecost $=(42,56,470+39,37,500)=$ Tk. 81,93,9,70
Merged contribution Margin $=(119,77,911-81,93,970)=T k, 37,83,971$.
Contribution Margie Ratio $=(3783971 / 11,97,7941)=3159 \%$

[Due to taking decims, the answer might deviate; Hovered marts may be given, if the process is corred]
(v) In order to earn profit of $T k, 25,00,000$ from the merged plant, the sales turnover will be -

$$
\text { Sales Turnover }=\frac{\text { Fixed cost }+ \text { Desires Profit }}{\text { Contribution Margin Ratio }}
$$

$$
\begin{aligned}
\text { Contribution Magi Ratio }=3182 \% & =\frac{(10,00,000+800,000-300,000)+25,00,000}{0.3182} \\
& =(15,00,000+25,00,000) / 0.3182 \\
& =\pi \cdot 1,25,70,710
\end{aligned}
$$

3(b)i)

$$
\begin{aligned}
\text { i) Net Income Marin } & =\frac{\text { Net income }}{\text { Sales }} \\
& =\frac{500,000}{32,00,000}=15.62 \%
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Current Ratio } & =\frac{\text { Current Assents }}{\text { Curet liabilities }} \\
& =\frac{16,50,000}{13,50,000}=1.22 \text { times }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Acid Test Ratio } & =\frac{\text { Current Assets-Investory }}{\text { Cement liability }} \\
& =\frac{16,50,000-50,000}{13,50,000}=1.19 \text { times }
\end{aligned}
$$

(iv) Long-Term Debt to EquityRto $=\frac{10,00,000}{30,00,000+500,000}$ $=$ (Long term Debt/Equity)

$$
=10,00,000 / 35,00,000=0.29 \text { times }
$$

$$
\text { (v) Time Interest Earned Ratio }=\frac{\text { Earnings Before Entreat a nl Tax }}{\text { Interest }}
$$

$$
\text { Interest }=10,00,000010 \%=100,000
$$

Since EBIT in not given we consider $=\frac{6,00,000}{100,000}=6$ times

$$
\begin{aligned}
\text { (vi) Return on Mses (RGA) } & =\frac{\text { Net in come }}{\text { Total Asset (Murat }+ \text { fixed } \text { Asses) })} \\
& =500,000 /(16,50,000+47,00,000) \\
& =500,000 / 6350,000=7.87 \%
\end{aligned}
$$

$$
\text { (vii) Return on Equity (ROE) } \begin{aligned}
& =\text { Net Income/ Shenotildes Equity } \\
& =500,000 /(30,00,000+500,000) \\
& =500,000 / 35,00,000=14 \cdot 28 \%
\end{aligned}
$$

(viii) Price-Earning ($P / E)$ Ratio $=$ M. Price Pershaw/Earning Per shave

$$
\begin{aligned}
\text { Earning per shane } & =\text { Nectineswe } / 00 . \text { of der }=11.20 / 1.67 \\
& =500,000 / 300,000=6.71 \text { times } \\
& =1.67
\end{aligned}
$$

4)

Month of 202A	Sales	Raw Material	Wages	Overhead
January	150,000	75,000	10,000	25,000
February	160,000	80,000	11,000	26,000
March	170,000	85,000	12,000	30,000
April	180,000	90,000	13,000	31,000
May	190,000	95,000	14,000	32,000
June	200,000	100,000	15,000	33,000

Ref	Cash Budget April-June 202A				
	Particulars	April	May	June	Quarter (April-June)
1	Cash in Hand (OB)	100,000	113,000	138,500	100,000
$2=3+4+5$	Sales	166,000	175,500	185,000	526,500
3	60\% Current Month	108,000	114,000	120,000	
4	20\% Previous Month	34,000	36,000	38,000	
5	15\% Before Previous Month	24,000	25,500	27,000	
6	Expenses:				
7	Raw Material (2 Months Credit)	80,000	85,000	90,000	255,000
8	Wages (No Lag in Payment)	13,000	14,000	15,000	42,000
9	Overheads (1 Month Lag in Payment)	30,000	31,000	32,000	93,000
10	Plant	10,000	10,000	10,000	30,000
11	Research Expenditure	10,000			10,000
12	Hire Purchase	10,000	10,000	10,000	30,000
13	Payment of Tax			100,000	100,000
14	Dividend Income			50,000	50,000
15=2+14	Total Cash Inflow	166,000	175,500	235,000	576,500
16=7 to13	Total Cash outflow	153,000	150,000	257,000	560,000
17=1+15-16	Cash in Hand (OB+Inflow-Outflow)	113,000	138,500	116,500	116,500

CS CamScanner
(6) (e)

$$
\begin{aligned}
\text { Cost of Debf(kt) }) & =\operatorname{Cost} \times(1-\operatorname{Tax} \text { Rate }) \\
& =.08 \times(1-.3750) \\
& =.05=5 \%
\end{aligned}
$$

Cost of Preference Sharl $(k=9 \%=109$
cost of Comman Equity by using CAPM Model

$$
\begin{aligned}
K_{e} & =K_{F}+B\left(K_{M}-K_{F}\right) \\
& =.04+1.2(.12-.04) \\
& =0.136=13.60 \%
\end{aligned}
$$

tivere,

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{F}}=\text { Risk Frue Rct }=.04 \\
& \beta=B_{\text {cha }}=1.20 \\
& K_{\mu}=\text { Macket Thon }=12 \%=12
\end{aligned}
$$

cost of Retured Earnings $k_{p e}=$ Cost of Equits $=13.60 \%$

$$
\text { WACC }=11.01 \%
$$

Pag-7

 $\Theta ఫ \mid-N m \downarrow$

